Première S

Ressources adaptées au programme de mathématiques de première S


Le programme des premières S (B.O. 2010) est disponible en version pdf.

Il est découpé en trois grands thèmes, et assorti de deux capacités transversales. Cliquez sur les différents thèmes pour obtenir une liste de ressources CultureMATH correspondantes.

  1. Analyse
  2. Géométrie
  3. Statistique et probabilités

Deux capacités transversales :

 

 
Articles du programme de Première S

On doit à Carl Friedrich Gauss (Brunswick 1777, Göttingen 1855) des contributions considérables en physique (électricité, magnétisme), en astronomie (Theoria motus corporum coelestium in sectionibus conicis solem ambientium, ou Théorie du mouvement des corps célestes parcourant des sections coniques autour du soleil, 1809) et en métrologie (théorie des erreurs, méthode des moindres carrés). Mais si, un an après sa mort, il eut droit à une médaille commémorative avec l’inscription Mathematicorum Principi (prince des mathématiciens), c’est en raison de ses travaux qui devaient jouer un rôle déterminant dans les mathématiques du 19e siècle : première démonstration du théorème fondamental de l’algèbre dans sa thèse en 1797, théorie des nombres (Disquisitiones Arithmeticæ, ou Recherches arithmétiques, 1801), théorie des surfaces (Disquisitiones generales circa superficies curvas, ou Recherches générales sur les surfaces courbes, 1827), entre autres. On sait qu’il avait découvert une géométrie non-euclidienne avant Lobatchevsky et abordé l’étude des fonctions analytiques avant Cauchy ; mais il ne publiait rien qui ne fût complètement élaboré à ses yeux.

Avec ses Disquisitiones Arithmeticæ de 1801 s’ouvre un univers théorique nouveau, l’arithmétique des congruences, où notre problème des restes chinois occupe la place relativement modeste de problème du premier degré. Nous donnons ici quelques extraits± des avant-propos (dédicace et préface) de l’auteur et des sections I et II de l’ouvrage, qui montrent les conceptions générales de Gauss, sa position par rapport aux travaux antérieurs et surtout le visage nouveau qu’il entend donner à l’arithmétique élémentaire, rigoureusement reconstruite± et reformulée en science des classes de nombres entiers. Avec les extraits des sections I et II, nous nous limitons à la partie élémentaire du traité qui correspond au programme d’arithmétique de la classe de terminale S, avec le problème des restes chinois en point d’orgue.

Question du jeudi #58 : Vous devez tirer au sort équitablement entre deux joueurs mais ne disposez pour ce faire que d'une pièce biaisée (dont vous ignorez en plus le biais exact). Comment faire ?

Question du jeudi #56 : Montrer que pour tout $n > 1$, le nombre $n^4 + 4$ n'est pas premier.

Question du jeudi #48 : Lors d'un tournoi de Quidditch, quatre équipes s'affrontent une fois chacune. Il est alors possible de lister les équipes, de telle sorte que chacune ait battu la suivante : par exemple, Gryffondor a battu Poufsouffle, qui a battu Serdaigle, qui a battu Serpentard.

Est-il toujours possible de faire une telle liste ? Quid si le tournoi voit s'affronter plus de quatre équipes ? On supposera dans cette question qu'un match de Quidditch ne peut pas être nul.

Version française d'une initiative mexicaine, le Calendrier Mathématique vous propose une énigme mathématique à résoudre tous les jours de la semaine. Celles-ci peuvent être de nature arithmétique, géométrique, ou faire simplement appel à un raisonnement ingénieux.

Question du jeudi #39 : On place n points sur un cercle et l'on trace toutes les cordes reliant ces deux points. On suppose en outre que les cordes sont en position générale, c'est-à-dire que trois cordes ne sont jamais concourantes. Combien de points d'intersection y aura-t-il à l'intérieur du disque ?

Question du jeudi #37 : Ana aime le hasard et déteste la monotonie. Tous les matins, elle tire à pile ou face sa boisson pour le petit déjeûner : thé ou café. Elle souhaite ainsi éviter de boire la même chose trois jours de suite. Au bout de n jours, quelle est la probabilité que sa règle de non-monotonie ait été respectée ?