Première S

Ressources adaptées au programme de mathématiques de première S


Le programme des premières S (B.O. 2010) est disponible en version pdf.

Il est découpé en trois grands thèmes, et assorti de deux capacités transversales. Cliquez sur les différents thèmes pour obtenir une liste de ressources CultureMATH correspondantes.

  1. Analyse
  2. Géométrie
  3. Statistique et probabilités

Deux capacités transversales :

 

 
Articles du programme de Première S

Quand l’histoire permet de faire la lumière sur les origines de neuf théories mathématiques pour mieux en comprendre les fondements... Les notions et concepts mathématiques ont souvent été inventés comme un moyen de résoudre des problèmes : comment maintenir la même pente dans la construction des pyramides ? comment creuser un tunnel par ses deux extrémités ? comment procéder à des partages, à des découpages de figures ? comment utiliser des représentations graphiques, des instruments pour effectuer des calculs d'ingénieurs, de congruences, d'erreurs ?

La définition de la causalité est une question centrale en philosophie des sciences qui, si elle suscite l'intérêt des philosophes depuis l'Antiquité, s'est vu profondément renouvelée depuis le milieu du XXe siècle. Ainsi, la philosophie de la causalité constitue aujourd'hui un domaine très dynamique. Néanmoins, les avancées dans l'analyse du concept de cause sont restées largement indépendantes des méthodes utilisées dans les sciences expérimentales pour identifier les relations causales...

On a dit, à juste titre, que D'Alembert n'avait jamais enseigné ... et il faut bien reconnaître que, lorsqu'on lit les Opuscules mathématiques, on peut parfois douter de ses intentions pédagogiques ! Mais cela ne signifie pas que D'Alembert ait été fermé à toute réflexion sur l'enseignement des sciences, même aux enfants...

Cet article, qui est entièrement de D'Alembert, sauf la définition du début, traduite de la Cyclopaedia de Chambers, est assez typique des positions de l'auteur en matière de physique. Il faut privilégier l'étude descriptive, voire mathématique, des phénomènes eux-mêmes plutôt que d'imaginer des "systèmes"; toutefois, il n'est pas interdit d'envisager avec prudence des mécanismes explicatifs, à condition de bien préciser ce qui est hypothétique et ce qui est avéré.

D'Alembert a signé environ 1700 articles, dont 90 % d'articles scientifiques parmi lesquels 90 % concernent les mathématiques au sens large, c'est-à-dire comprenant la mécanique, l'hydrodynamique, l'acoustique, l'astronomie, l'optique. C'est à ces derniers qu'est consacré ce chapitre.

Qu'y a-t-il de commun entre un flocon de neige, une mosaïque et un rayon de miel ? Leur symétrie, source constante de fascination pour les mathématiciens depuis des millénaires. Car au-delà de ce que l'oeil perçoit, au-delà des illusions d'optique et des mirages, des nombres invisibles unissent tous ces curieux objets symétriques...

Dans cette conférence destinée à des lycéens du cycle terminal scientifique (S), Laure saint-Raymond montre comment le système dynamique océanographique, qui est d'une grande complexité, peut être modélisé en faisant appel à des modèles simplifiés qui permettent d'obtenir de bonnes approximations.

Voici une séquence de travail scénarisée autour d’un texte proposant un algorithme qui permet de résoudre un système de trois congruences simultanées modulo des entiers premiers entre eux deux à deux.

Dans ce chapitre nous avons sélectionné deux types de sources. D’une part, des énoncés choisis pour leur présentation imagée du problème : sous un habillage « concret  », ces textes nous montrent entre autres l’imagination au service des mathématiques. C’est ce qui a motivé leur regroupement et non les mathématiques mises en œuvre pour la résolution. Certaines solutions sont « brutes », d’autres sont accompagnées de commentaires, d’explications, ou de véritable justification mathématique.