Premières ES - L

Ressources adaptées au programme de mathématiques de première ES/L


Le programme commun des premières ES et L (B.O. 2010) est disponible en version pdf.

Il est découpé en deux grands thèmes, et assorti de deux capacités transversales. Cliquez sur les différents thèmes pour obtenir une liste de ressources CultureMATH correspondantes.

  1. Algèbre et analyse
  2. Statistique et probabilités

Deux capacités transversales :

 

 
Articles du programme de Premières ES - L

De grands défis mathématiques d’Euclide à Condorcet n’est pas une histoire des grands problèmes mathématiques ou historiques. Cet ouvrage, la dernière production de la commission inter-IREM « épistémologie et histoire des mathématiques », ne restreint pas non plus l’histoire des mathématiques à ses seuls apports culturels qui, par ailleurs, ne sont pas négligés...

C’est l’heure de la célébration festive d’un anniversaire joyeux, d’un jubilé particulièrement important pour tous ceux qui aiment et qui enseignent les mathématiques : le centenaire de l’APMEP ! Ce faisant, nous célébrerons une fête des mathématiques qui, siècle après siècle, accumulent les occasions de vivre les beautés et les surprises de l’intelligence. En remontant dans le temps nous évoquerons ainsi les visions de Cantor, les constructions de Boliay, les machines de d’Alembert, et les aventures de Neper. Et nous évoquerons bien d’autres situations, concepts ou problèmes, qui ont fait, et qui font toujours, du jeu des calques mathématiques (ceux du formalisme, des représentations et des objets réels) le plus jubilatoire des jeux de l’esprit et de la connaissance.

On attribue au physicien Ernest Rutherford (1871-1937) la citation « All science is either physics or stamp collecting ». Malgré son caractère provocateur et caricatural, cette citation résume assez bien l’architectonique des sciences jusqu’à la fin du XXe siècle : la physique règne, une grande partie des mathématiques est motivée par ses applications à la physique, la biologie décrit et classe les espèces, les humanités ne sont pas encore les sciences humaines et la technique n’est qu’une application de la science.

Cet ouvrage a pour but d'amener le lecteur à la rencontre de textes scientifiques originaux, s'échelonnant pour la plupart du XVIIe au début du XXe siècle. Quinze scientifiques contemporains ont chacun choisi un texte ancien qu'ils aiment, manuscrit, article ou quelques pages d'un livre et en présentent une analyse. En suivant le texte de près, avec des citations abondantes, ils s'attachent à expliquer la démarche et la nature des résultats d'un savant dont la pensée compte encore à notre époque.

Au milieu du XIX° siècle, la percée de George Boole (1815-1864) pour 'algébriser' la logique est la concrétisation d'une lente évolution concernant, outre la logique elle-même, les mathématiques et leur rôle dans l'évolution des sciences. Si, dans sa forme brute, le calcul de Boole a pu déconcerter, ce n'est pas seulement par ses insuffisances avérées mais aussi par son existence même.

Bien qu'elle fut découverte par l'astronome grec Hipparque au IIème siècle av. J.C., il a fallu attendre la fin du  XVIIème siècle  pour qu'une explication soit donnée par Newton du mouvement de la précession des équinoxes, qui consiste en un déplacement de l'axe de rotation de la terre dans l'espace selon un cône dans une période de 26 000 ans. En 1748 D'Alembert s'attaque lui aussi avec une très grande motivation au sujet. Il publie dès l'année suivante ses "Recherches sur la précession des équinoxes & sur la nutation de l'axe de la Terre dans le système Newtonien". Dans cet ouvrage d'astronomie théorique,  D'Alembert tout en reconnaissant le génie de Newton souligne les imperfections de ses calculs, et établit pour la première fois une théorie très précise et exacte non seulement du mouvement de précession mais aussi de la petite boucle de nutation découverte deux ans auparavant par Bradley...

Extrait d'une lettre de D'Alembert à Euler du 20 juillet 1749 sur le problème de l'apogée : "Quoiqu'il en soit, Monsieur, je vous avoüeray, qu'en supposant même que nous ne nous soyons point trompés dans le calcul du mouvement de l'apogée, je ne goute nullement l'opinion où vous paroissés être, et où M. Cairaut etoit aussy, que l'attraction ne suit pas exactement la loy inverse du quarré des distances."

Une raison pour laquelle la mathématique jouit d’une estime particulière, au-delà de toutes les autres sciences, est que ses lois sont absolument certaines et incontestables, quand celles des autres sciences sont dans une certaine mesure discutables et en danger permanent d’être renversées par des faits nouvellement découverts. »