Terminale S

Ressources adaptées au programme de mathématiques de terminale S


Le programme des premières S (B.O. 2011) est disponible en version pdf.

Il est découpé en trois grands thèmes (plus deux pour l'enseignement de spécialité), et assorti de deux capacités transversales. Cliquez sur les différents thèmes pour obtenir une liste de ressources CultureMATH correspondantes.

  1. Analyse
  2. Géométrie
  3. Statistique et probabilités
  4. Arithmétique (enseignement de spécialité)
  5. Matrices et suites (enseignement de spécialité)

Deux capacités transversales :

 

 
Articles du programme de Terminale S

L'objet de cet article est, en particulier, de montrer que le choix des 7 notes de la gamme classique (do-ré-mi-fa-sol-la-si) parmi les 12 notes du système tempéré (do-do#- ré-ré#-mi-fa-fa#-sol-sol#-la-la#-si) est le seul choix possible qui satisfasse à des critères naturels liés à la transposition. L'approche utilisée, qui n'emploie que des considérations mathématiques élémentaires, fournit également des justifications purement mathématiques ou combinatoires à l'usage de la gamme mineure augmentée (la-si-do-ré-mi-fa-sol#) ou d'autres gammes utilisées dans l'histoire (telle la gamme pentatonique javanaise), ou encore à l'importance d'autres gammes et accords classiques de l'harmonie musicale.

On a dit, à juste titre, que D'Alembert n'avait jamais enseigné ... et il faut bien reconnaître que, lorsqu'on lit les Opuscules mathématiques, on peut parfois douter de ses intentions pédagogiques ! Mais cela ne signifie pas que D'Alembert ait été fermé à toute réflexion sur l'enseignement des sciences, même aux enfants...

Cet article, qui est entièrement de D'Alembert, sauf la définition du début, traduite de la Cyclopaedia de Chambers, est assez typique des positions de l'auteur en matière de physique. Il faut privilégier l'étude descriptive, voire mathématique, des phénomènes eux-mêmes plutôt que d'imaginer des "systèmes"; toutefois, il n'est pas interdit d'envisager avec prudence des mécanismes explicatifs, à condition de bien préciser ce qui est hypothétique et ce qui est avéré.

D'Alembert a signé environ 1700 articles, dont 90 % d'articles scientifiques parmi lesquels 90 % concernent les mathématiques au sens large, c'est-à-dire comprenant la mécanique, l'hydrodynamique, l'acoustique, l'astronomie, l'optique. C'est à ces derniers qu'est consacré ce chapitre.

Qu'y a-t-il de commun entre un flocon de neige, une mosaïque et un rayon de miel ? Leur symétrie, source constante de fascination pour les mathématiciens depuis des millénaires. Car au-delà de ce que l'oeil perçoit, au-delà des illusions d'optique et des mirages, des nombres invisibles unissent tous ces curieux objets symétriques...

Dans cette conférence destinée à des lycéens du cycle terminal scientifique (S), Laure saint-Raymond montre comment le système dynamique océanographique, qui est d'une grande complexité, peut être modélisé en faisant appel à des modèles simplifiés qui permettent d'obtenir de bonnes approximations.

Voici une séquence de travail scénarisée autour d’un texte proposant un algorithme qui permet de résoudre un système de trois congruences simultanées modulo des entiers premiers entre eux deux à deux.

Dans ce chapitre nous avons sélectionné deux types de sources. D’une part, des énoncés choisis pour leur présentation imagée du problème : sous un habillage « concret  », ces textes nous montrent entre autres l’imagination au service des mathématiques. C’est ce qui a motivé leur regroupement et non les mathématiques mises en œuvre pour la résolution. Certaines solutions sont « brutes », d’autres sont accompagnées de commentaires, d’explications, ou de véritable justification mathématique.

Découvrez ou redécouvrez les grandes idées qui font la force des mathématiques en suivant l'incroyable destinée de la question de Kakeya. Ou comment une devinette apparemment enfantine a pu croître et se ramifier jusqu'à se transformer en un véritable défi lancé aux plus grands cerveaux de notre temps ?