Terminale S

Ressources adaptées au programme de mathématiques de terminale S


Le programme des premières S (B.O. 2011) est disponible en version pdf.

Il est découpé en trois grands thèmes (plus deux pour l'enseignement de spécialité), et assorti de deux capacités transversales. Cliquez sur les différents thèmes pour obtenir une liste de ressources CultureMATH correspondantes.

  1. Analyse
  2. Géométrie
  3. Statistique et probabilités
  4. Arithmétique (enseignement de spécialité)
  5. Matrices et suites (enseignement de spécialité)

Deux capacités transversales :

 

 
Articles du programme de Terminale S

L’épistémologie est la philosophie des sciences. L’épistémologie mathématique a pour but de réfléchir à ce que l’on fait vraiment quand on fait des mathématiques, et d’analyser le rapport entre cette pratique et la pratique des autres sciences. Les mathématiques ont une histoire, et leur histoire est toujours en cours. Aussi cet ouvrage se propose d’éclairer par l’histoire les questions soulevées...

Brescia, février 1512. Les armées françaises de Louis XII envahissent la ville, la pillent et massacrent ses habitants. Dans la fureur du combat, un garçon de douze ans est frappé d’un coup de sabre en plein visage. Grièvement blessé, il restera bègue toute sa vie et sera connu sous le nom de Tartaglia (« bègue » en italien)...

D'après Jean Dieudonné, un mathématicien est avant tout « quelqu'un qui a publié au moins la démonstration d'un théorème non trivial ». Autant dire qu'il n'y a de mathématicien que parce que les mathématiques sont difficiles... Pourtant, cette difficulté est quasiment contre-nature : comme l'a souligné Poincaré, dans l'activité mathématique, l'esprit « n'agit ou ne paraît agir que par lui-même et sur lui-même »...

Nous étudions, dans ce chapitre, la résolution d’un système de deux congruences simultanées, les modules étant premiers entre eux, telle qu’elle serait menée au lycée. Même si nous nous appuyons sur un problème historique, nous employons les notations modernes, notamment le signe de congruence introduit par Gauss...

Le 31 mai 1832, le mathématicien Évariste Galois est âgé de 21 ans ; il meurt en duel pour les yeux de sa belle. La veille, il a résumé ses travaux. Ainsi s’achève ce destin singulier. Ardent républicain, il est chassé de l'École normale pour ses discours politiques. Il prend d’autres prises de position violentes, et est incarcéré à 20 ans pour avoir porté un toast à la mort du roi Louis-Philippe...

Ce livre présente la logique sous un aspect original en s'attachant à en faire d'abord comprendre l'intérêt et la méthode. Le lien entre logique et raisonnement est ainsi constamment présent, les erreurs classiques de raisonnement analysées, et les notions de preuve et de déduction expliquées en prenant modèle sur des raisonnements courants...

E. N. Lorenz, un grand météorologue du 20e siècle voulait comprendre pourquoi les phénomènes atmosphériques étaient si difficiles à prévoir. Comme une grande partie des mouvements atmosphériques est d’origine convective, il s’intéressa aux équations modélisant la convection dans un fluide. Ces dernières donnèrent naissance au « système de Lorenz ». Nous commencerons par étudier les propriétés de ce système et montrer qu’il possède un comportement chaotique, ce qui limite sa prévisibilité. Nous généraliserons le problème aux prévisions météorologiques et verrons que si on ne peut pas prévoir la météo à plus de quinze jours, on peut toutefois étudier le climat futur. Dans le contexte de polémique sur le réchauffement climatique, la compréhension des systèmes chaotiques apporte donc un éclairage pertinent sur le problème

 

Issus du séminaire d'épistémologie de l'IREM (Univ. Paris 7) et d'un colloque de philosophie des mathématiques, dirigés par Michel Serfati, ces articles décrivent les compas de Descartes, une méthode de résolution par géométrisation, la place de la psychologie chez Boole, Cantor et Brouwer, les machines de Turing, les lignes de courbure d'une surface mises à jour par Monge, le rapport contenu du travail du mathématicien...

Vous n’arrivez pas à convaincre vos proches que vous faites des mathématiques sous prétexte que c’est un art, la clé du monde, la beauté à l’état pur, que la philosophie n’est pas assez exacte ou que tout le monde a essayé de vous dissuader ?

Voici une séquence de travail scénarisée autour d’un texte proposant un algorithme qui permet de résoudre un système de trois congruences simultanées modulo des entiers premiers entre eux deux à deux.