Géométrie

Il existe, en géométrie riemannienne, une notion très importante qui est celle de courbure, mais qui est, hélas, très difficile à définir et à utiliser. On peut cependant, dans le cas des surfaces, en donner une vision assez simple et néanmoins assez précise.

Le dossier consacré aux polyèdres se compose de neuf séquences filmées, où Jean-Jacques Dupas, assisté de sa fille Alice, présente les polyèdres depuis leurs plus simples composants, les polygones, jusqu'aux objets les plus élaborés découverts récemment.

Ces courbes possèdent un grand nombre de propriétés remarquables. Souvent appelées "cubiques circulaires focales", elles sont notamment étudiées dans les articles, dans la splendide revue Quadrature (Magazine de mathématiques pures et épicées), de Roux et Tixier (numéro 46 automne 2002 et numéro 47 janvier 2003) sur les configurations de Reye, où elles sont qualifiées d'axées. Dans ces articles comme dans beaucoup d'autres, il n'est pas fait de distinction entre éléments réels ou complexes. L'étude ci-après se place par contre en espace euclidien, supposant donc les éléments introduits (droites, cercles, cubiques) réels.

L'énoncé E.207 du "Coin des problèmes" de la belle revue mathématique Quadrature (Magazine de mathématiques pures et épicées) numéro 48 (Avril-juin 2003) page 47, avait pour but de montrer que les six projetés orthogonaux des sommets d'un triangle sur ses bissectrices extérieures. La solution proposée dans le numéro 51 (Janvier-Mars 2004) introduisait la notion de cercle de Taylor d'un triangle. Ce cercle est un cas particulier d'une famille générale de cercles attachés à un triangle, les cercles de Tücker, dont cet article donne la définition générale et les principales propriétés.

Cet article traite d'une condition d'alignement et de cocyclicité de trois et quatre points sur une cubique circulaire. Son but est de montrer qu’on peut avec des calculs très réduits obtenir de très belles propriétés géométriques, qu’il serait difficille d’obtenir par des arguments géométriques (alignement, cocyclicité, bitangence).

Cet article propose un classement complet des courbes trochoïdales obtenues par roulement sans glissement. L'auteur donne un tableau à double entrée qui permet suivant les divers paramètres (rayons du cercle de base, de roulement et rapport d'élongation) de donner immédiatement la forme de la courbe. La recherche des développées de ces courbes est une application exploitée.

Une loi de groupe est définie dans un triangle par des conditions de concours et d'alignement. L'auteur montre comment trouver et construire géométriquement l'inverse d'un point, et le composé de deux points, et même les racines carrées d'un point donné.

Cet article audacieux entreprend la recherche des 27 droites sur une surface cubique non réglée, avec représentation paramétrique, double six de Schlaffli, lien avec la théorie des groupes et même lien avec la théorie des super-cordes.