Parutions

Bernhard Riemann (1826-1866) rêvait d’une théorie mathématique qui décrirait toutes les lois de la nature. Timide et réservé dans la vie, il était audacieux lorsque son esprit s’emparait d’idées inattendues qui dépassaient le cadre des mathématiques et s’aventuraient dans la physique, la philosophie naturelle et même la psychologie...

Formalisation d’une pratique bien connue (noeud d’écoute, noeud du pêcheur, noeud de chaise, etc.), le noeud est aussi un concept mathématique dont l’étude constitue une partie de la géométrie. La théorie des noeuds amorcée à la fin du XIXe siècle pourrait devoir sa récente explosion à l’implication des noeuds dans des disciplines aussi éloignées que la biologie moléculaire, la physique statistique ou encore la théorie quantique des champs.

Socle même de la méthode mathématique depuis l’Antiquité grecque, la notion de démonstration s’est profondément transformée, depuis le début des années soixante-dix. Plusieurs avancées mathématiques importantes, non toujours connectées les unes aux autres, remettent ainsi progressivement en cause la prééminence du raisonnement sur le calcul, pour proposer une vision plus équilibrée, dans laquelle l'un et l'autre jouent des rôles complémentaires...

Les mathématiques sont faciles et s’y adonner est un plaisir. La preuve la plus simple vient de la musique qui est toujours, d’une façon ou d’une autre, un jeu abstrait de nature mathématique, qui fait ressentir à chacun l’infinie beauté des formes pures et immatérielles, formes qui justement sont la préoccupation du mathématicien...

Comment l’ordinateur a-t-il été inventé ? Comment s’est diffusée l’informatique ? Comment une technique donne-t-elle naissance à une science ? Comment stimuler ou freiner l’innovation ? Pourquoi la France, où l’on prétendait en 1947 avoir une « avance théorique » en calcul électronique, a-t-elle dû, vingt ans après, lancer un Plan Calcul pour rattraper son retard ?

Carrefour entre les sciences et les techniques, entre l’histoire et la sociologie, la cryptologie – étymologiquement « science du secret » – imprègne en profondeur notre vie quotidienne. Pourtant, il y a seulement quelques années, elle restait transparente à nos regards en dépit de sa présence dans un grand nombre de services d’usage courant comme la carte bancaire, le téléphone, la télévision ou Internet.

Cet ouvrage rassemble neuf expériences d’introduction d’une perspective historique dans l’enseignement des mathématiques, depuis le collège jusqu’à l’enseignement supérieur. Elles ont toutes pour point de départ des problèmes historiques. Ici, les problèmes concernent l’arpentage et la navigation ainsi que la topographie et les jeux de dés, mais aussi l’inscription d’un carré dans un triangle et les calculs graphiques...

Les mathématiques c’est un peu comme un aérodrome : au départ il y a une petite piste en terre où un avion vient atterrir et décoller de temps en temps, puis davantage d’avions arrivent et partent, la piste s’étend, il y a une aérogare pour accueillir les voyageurs, puis une deuxième piste et ça finit par devenir un endroit gigantesque et grouillant de vie.

Qui n’a jamais, sur les bancs de l’école, essayé de faire passer un message secret à son voisin de table, espérant ainsi que l’instituteur (ou l’institutrice) ne le comprendrait pas ? Qui n’a jamais été intrigué par les signaux en morse, parlé (ou entendu parler) le Javanais ou lu la célèbre lettre de George Sand à Alfred de Musset ? La cryptographie, c’est l’art de transmettre des messages qui ne seront compréhensibles que pour les personnes concernées par ces informations...

Cet ouvrage est issu d’un cours en première année à l’École Polytechnique. Il offre une introduction à trois des théories à la racine des mathématiques et recouvre une bonne partie du cursus de L3 à l’Université.

helloParutions