Livres

En 1752, Vincenzo Riccati publie à Bologne un mémoire intitulé De usu motus tractorii in constructione aequationum differentialium. Il y démontre un résultat inespéré, à savoir que toute courbe définie par une équation différentielle peut être construite par un mouvement tractionnel...

La présente Psychologie des mathématiques s’inscrit dans le champ de ce que H. Blumenberg a pu appeler, en s’intéressant à d’autres domaines du savoir que les mathématiques, une métaphorologie. Elle cherche l’affectivité essentielle qui s’attache à l’activité de faire des mathématiques ; elle articule cette affectivité avec une rhétorique, à la façon dont Aristote faisait de la réflexion sur les passions un chapitre majeur de sa Rhétorique...

Dans ce livre les auteurs explorent le croisement fécond et effectif des méthodes et des perspectives théoriques et expérimentales des mathématiques, des sciences de la nature et de la vie, mais aussi de la philosophie des sciences. Il s’agit en fait de faire le point sur les acquis majeurs des sciences formelles et empiriques les plus récentes qui sont susceptibles enrichir voire de renouveler en profondeur notre conception scientfique et philosophique de la nature...

Vous êtes-vous déjà demandé : Pourquoi les alvéoles de nids d’abeilles avaient cette forme-là ? Quelle est la probabilité de gain au loto ou à la roulette ? Comment couper une pizza en parts égales ? Comment les Grecs calculèrent le rayon de la Terre ? Comment organiser des tournois de foot ?

Les mathématiques ont fait la preuve d’une efficacité presque déraisonnable, selon l’expression d’Eugène Wigner, dans le domaine des sciences physiques et de leurs applications technologiques. Leur rôle en biologie et en sciences sociales a été plus modeste, mais tend actuellement à se développer grâce aux possibilités de simulation qu’offrent les ordinateurs...

Mathématicienne, l'abeille qui construit ses cellules en hexagone parfait? Mathématicienne, la fourmi qui,  après avoir longuement zigzagué à la recherche de nourriture, revient sans hésiter droit vers son nid dès qu'elle l'a trouvée? Mathématicienne, la chauve-souris qui repère la position, la direction et  la vitesse de sa proie grâce à un sonar Doppler perfectionné? Mathématicienne, la sterne arctique capable de retrouver son aire de nidification littéralement aux antipodes? Mathématicienne la plante qui espace ses feuilles le long d'une branche de telle sorte que chacune reçoive le maximum de lumière?

Depuis plus de dix ans, La main à la pâte contribue activement à une rénovation de l’enseignement des sciences en France et dans une trentaine de pays. Dans cet esprit, Le Pommier a, en 2004, publié L’Europe des découvertes, destiné aux enseignants de cycle 3 et début collège. L'originalité de l'ouvrage était de permettre une utilisation constructive de l’histoire des sciences et des techniques pour conduire des activités expérimentales en classe....

Pourquoi la Lune nous montre-t-elle toujours la même face ? Pourquoi se laisse-t-elle voir en plein jour ? Pourquoi y a-t-il des saisons, des mirages ou des aurores boréales ? Qu’est-ce qu’une grande marée d’équinoxe ?

Certains nombres ont acquis un prestige particulier, en raison de leurs propriétés mathématiques, de leurs multiples applications et aussi de la « part de rêve » qu’ils nous donnent au travers de ce qui constitue parfois une véritable mythologie...

Les mathématiques discrètes sont la partie des mathématiques qui s’intéresse à des objets «énumérables » comme une succession de nombres entiers, un réseau routier fait de carrefours reliés par des routes, le codage et l’interprétation de données mises sous la forme d’une suite de 0 et de 1, etc. Encore balbutiantes au début du XXe siècle, les mathématiques discrètes ont, depuis, pris leur essor, notamment sous l’impulsion de l’informatique...