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 (This is an expository article which evolved from notes written in preparation for a 40-minute talk

 for a general audience at the "Symposium on Number Theory," held in Washington D.C. on May 4,

 1989 under the auspices of the Board on Mathematical Sciences of the National Research Council. To

 make the text more informative the original version has been supplemented with lots of commentary, a

 section (?4) has been added which may be useful to readers familiar with the classical theory of

 modular forms, and an appendix has been added which is meant for an even more specialized audience.

 I am thankful to P. Diaconis, J. Mazur, K. Ribet and J.-P. Serre, who read early drafts of this paper,

 and whose suggestions were very helpful to me.)

 1. Introduction. When a friend saw the title to my talk he asked if what I had

 in mind was the Well-known fact that number theory has an annoying habit: the

 field produces, without effort, innumerable problems which have a sweet, innocent

 air about them, tempting flowers; and yet ... the quests for the solutions of these

 problems have been known to lead to the creation (from nothing) of theories which

 spread their light on all of mathematics', have been known to goad mathematicians

 on to achieve major unifications of their science2, have been known to entail

 painful exertion in other branches of mathematics to make those branches

 serviceable3. Number theory swarms with bugs, waiting to bite the tempted

 flower-lovers who, once bitten, are inspired to excesses of effort!

 Well, perhaps that summarizes the general aim of my talk-but, to put it more

 gently, I want to spend a few minutes considering one example (a conjecture, in

 fact) which shows how Number Theory can sometimes contrive to be a helpful, and

 possibly inspirational, goad to the rest of the Mathematical Sciences.

 The most celebrated of all deceptively simple (and still unsolved!) problems in

 Number Theory is surely Fermat's Last Theorem4. Its curious history (whose

 statement first occurs as a marginal commentary on the equation arising from the

 Pythagorean theorem) is so well known, it needn't be rehearsed here. Professional

 mathematicians, after Fermat, have approached Fermat's Last Theorem with

 Ie.g., Kummer's theory of ideals

 2e.g., Grothendieck's theory of schemes

 3e.g., The theory of group representations, and in particular, the "Langlands program"

 4For a detailed account of the recent work on this see Oesterle's Bourbaki report [0] listed in the

 References for ?4.

 593
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 mixed feelings. Kummer, for example, called it "more of a joke than a pinnacle of

 science," and he came as close as anyone has come to proving it! Gauss wouldn't

 work on it, even when urged by his friends to do so in order to get the cash reward

 which had been offered for its solution.

 But Fermat's Last Theorem has always been the darling of the amateur

 mathematicians, and as things have progressed, it seems that they are right to be

 enamored of it: Despite the fact that it resists solution, it has inspired a prodigious

 amount of first-rate mathematics. Despite the fact that its truth hasn't a single

 direct application (even within number theory!) it has, nevertheless, an interesting

 oblique contribution to make to number theory: its truth would follow from some

 of the most vital and central conjectures in the field. Although others are to be

 found, Fermat's Last Theorem presents an unusually interesting "test" for these

 conjectures.

 My aim is to describe, in some detail, one of these grand conjectures (due to

 Shimura, Taniyama and Weil5) which, even though still unproved, plays a struc-

 tural and deeply influential role in much of our thinking and our expectations in

 Arithmetic. Thanks to recent work of Frey, Serre, and Ribet6, it has a large

 number of applications, Fermat's Last Theorem among them. As I shall not have

 time to make clear, but hope, at least, to make believable, the conjecture of

 Shimura-Taniyama-Weil is a profoundly unifying conjecture-its very statement

 hints that we may have to look to diverse mathematical fields for insights or tools

 that might lead to its resolution'.

 As we shall see, the conjecture of Shimura-Taniyama-Weil would imply a

 strange and important connection between the elliptic curves that arise in Arith-

 metic (we'll get to that shortly!) and the Hyperbolic Plane.

 I mentioned above that the conjecture of Shimura-Taniyama-Weil has as one of

 its consequences, Fermat's Last Theorem. As everyone knows, Fermat's Last

 Theorem is an assertion about the family of (Diophantine8) equations

 XN + YN = ZN

 5The fact that this conjecture has also been referred to as the Weil conjecture, the Tanilyama-Weil

 conjecture, and the Taniyama conjecture points to the difficulty in assigning to it a clear attribution. It

 was originally formulated as a problem by Taniyama in a conference in 1955 and was published in

 Japanese, in Sfugaku 7 (1956) p. 269. A more precise formulation corresponding to the modern form of

 the conjecture-involving important information concerning the conductor-was implicitly suggested

 by subsequent work of Weil which had the effect of bringing the problem to the attention of a large

 audience. The most precise version of this conjecture to date, which brings in the crucial issue of fields

 of definition, incorporates work of Shimura, Eichler, and others (see footnote 15 below, and the

 technical appendix at the end). For a moving evocation of the life and times of Taniyama (as well as an

 English translation of the original statement of Taniyama's problems) see the article "Yutaka Taniyama

 and his time, very personal recollections," Goro Shimura, Bull. London Math. Soc. 21 (1989) 186-196.

 6See [S], [Fr 1, Fr 2], and [R] listed in the references at the end of ?4.

 7It does not seem unnatural to look to differential geometry for progress with this conjecture, or to

 partial differential equations and the study of the eigenvalue problem for elliptic operators, or to the

 representation theory of reductive groups... . It would be no surprise if ideas from the classical theory

 of one complex variable and the Mellin transform were relevant, or of Algebraic Geometry... . But

 perhaps one should also look in the direction of Kac-Moody algebras, loop groups, or 9-modules,

 perhaps to ideas that have been, or will be, imported from Physics....

 8The adjective "Diophantine" is in honor of the Alexandrian mathematician Diophantos (perhaps

 A.D. 250) and signals vaguely a type of equation not dissimilar from those Diophantos considered.
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 for N = 3, 4, 5,..., or with little loss of generality, for odd prime exponents N.

 But despite the elegance, and evident symmetries of the above family of equations,

 there is no denying that, after all, it is merely one family of Diophantine equations.

 What is so excellent about these particular equations?

 Now, the urge to put any single instance in an appropriate general context

 before dealing with it mathematically is strong. Consider, for example, the way

 Frangois Viete, the modern inventor of algebra, expressed that urge at the end of

 his treatise (c. 1591) by saying that algebra appropriated for itself "the proud

 problem of problems: which is to leave no problem unsolved." More to the point,

 consider the most celebrated of recent Diophantine results, valid in a truly general

 context: the theorem of Faltings (conjectured originally by Mordell) which asserts

 that any algebraic equation in two variables, and of genus9 greater than or equal to

 2, has only a finite number of rational solutions.

 But what is an appropriate general context in which to place the Fermat family

 of Diophantine equations, and what is the appropriate Diophantine question to

 ask? Despite the fact that the Fermat problem has been with us for three centuries

 I don't believe that we have any thoroughly comfortable answer, even to this

 modest question. One may always take recourse (in cases where it is not clear how

 to "correctly" generalize a problem) in the reliable method of kicking the problem

 a bit, to get a "nearby" one... . A relatively conservative move in this direction, in

 the case of Fermat's equation, is to allow general coefficients in the equation, say

 one coefficient for starters-for example, fix a nonzero integer A, and consider

 the family

 A *XN+ yN = ZN

 and then ask: Is there an exponent No such that for exponents N (or for prime

 exponents N) greater than No there is no triple of integers (X, Y, Z), none zero,

 solving the above equation? In this slight perturbation of Fermat's original prob-

 lem a few minutes of reflection will convince one to be circumspect in framing

 precise conjectures... (e.g., consider A = 2). Nevertheless the conjecture of

 Shimura-Taniyama-Weil has an impressive power of prediction concerning the

 About Diophantos' personal history little is known, save what can be gleaned from the following

 problem which occurs in a collection, the Palatine Anthology, compiled, scholars believe, no more than

 a century after his death:

 Here you see the tomb containing the remains of Diophantos, it is remarkable: artfully it tells

 the measures of his life. The sixth part of his life God granted him for his youth. After a twelfth

 more his cheeks were bearded. After an additional seventh he kindled the light of marriage, and

 in the fifth year he accepted a son. Elas, a dear but unfortunate child, half of his father he was

 and this was also the span a cruel fate granted it. He consoled his grief in the remaining four

 years of his life. By this devise of numbers, tell us the extent of his life.

 9The genus g of an algebraic curve is a nonnegative integer which was originally introduced by

 Riemann and defined by "topological means." It also has an "algebraic" definition, and as such is an

 intrinsic invariant of the field of algebraic functions on the curve. If the curve is given as the locus of

 zeroes of a homogeneous form of degree d in three variables in the projective plane then g < (d -

 1)(d - 2)/2 with equality holding if and only if the curve has no singularities. In contrast to the genus,

 however, the degree is not given by the field of functions of the curve alone: it is defined in terms of the

 representation of the curve in projective space. For this reason it is more natural to look to the genus

 rather than to the degree as an invariant which determines "Diophantine behavior."
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 nature of nontrivial integer solutions for these families. For example,10 using work

 of Frey, Serre, and Ribet, the Shimura-Taniyama-Weil conjecture would imply that

 the above equation has no such solutions for prime exponents N > 7 if A is any

 power of 3, or of 5, or of 7 (or of 11, 13, 17, 19, 23, 29, 53 or 59, for that matter",

 provided that N doesn't divide A), and it would guarantee the existence of an No

 such that for prime exponents N > No there are no such solutions if A is any

 power of any odd prime not of the form 2' + 1 (i.e., if A is neither a power of a

 Mersenne nor of a Fermat prime).

 In summary, the conjecture of Shimura-Taniyama-Weil seems to be getting into

 the thorny thicket of these Diophantine issues-seems to be giving reasons why

 some (but not all!) of these equations cannot have solutions-seems to be

 beginning to put such Diophantine problems in a "context."

 It also relates them to the extraordinary geometric questions to which we shall

 now turn.

 2. Euclidean and non-Euclidean covering mappings. One of the mysteries of

 the Shimura-Taniyama-Weil conjecture, and its constellation of equivalent para-

 phrases, is that although it is undeniably a conjecture "about arithmetic," it can be

 phrased variously, so that: in one of its guises, one thinks of it as being also deeply

 "about" integral transforms in the theory of one complex variable; in another as

 being also "about" geometry'2.

 The more striking of these two formulations is the geometric one. To explain it

 we need to review a few basics of geometry: symmetries, orbits, orbit spaces,

 covering mappings, and the interesting concept of "uniformization" ... . We'll build

 things up slowly by first considering these notions in a relatively simple context (on

 the Real Line), and then in the two contexts (Euclidean and Non-Euclidean)

 necessary for the actual "geometric" statement of the conjecture.

 TA ="shift to right >-* by A units"

 (Real Line) o ___ 0 0 ___

 -3A -2A -A 0 + A +2A +3A

 FIG. 1. The "lattice" A = {0, + A, + 2A,... } is the orbit of 0 under the translation TA.

 (I). On the real line.

 Let A be a positive real number and let TA denote the operation on the real line

 R consisting of "shifting all points in R to the right" by A (synonymously:

 translation by A; in equations: TA(x) = x + A). We view TA as a symmetry of WR.

 The iterated translates of 0 by TA and by its inverse TA give us a discrete evenly

 spaced "lattice" A in DR consisting of all integral multiples of A.

 10See thme. 2 and subsequent remarks. in section 4.3 of J.-P. Serre's [S] listed in the references at

 the end of ?4.

 1"And with more work, one could surely produce more such consequences of Shimura-Taniyama-

 Weil.

 12The equivalence of these two formulations is due to Weil, following upon work of Hecke.
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 1991] NUMBER THEORY AS GADFLY 597

 The orbit of a real number x with respect to the lattice A, is the collection of

 real numbers obtained from x by translating x by iterates of TA and by its inverse

 T-A (that is, the orbit is the collection of real numbers x + N A where N runs

 through all integers). The lattice A itself is the orbit containing the origin. Given a

 fixed real number A, any orbit for A has a unique representative in the interval

 A < x <A + A.

 o- (> I . o ao 0 0 o a .0 is o _

 -3A x -2A -A 0 +A +2A +3A

 FIG. 2. The black squares mark the "orbit" of some general real number x.

 The orbit space of DR with respect to the symmetry TA (or one might also say:

 with respect to the lattice A) is simply the collection of orbits (with respect to A).

 Call the orbit space Rk/A. One can think of the orbit space as obtained from DR by

 "identifying" any point x in DR with any iterated translate of x by TA and T-A, i.e.,

 with all points y E DR such that y = x + NA for some integer N. The easiest way to

 visualize this is by wrapping the real line (viewed as a helix in the figure below)

 around a circle (say a unit circle in the complex plane) in such a manner that

 points on DR of distance A apart map to the sample point of the circle:

 z -> e2iz/Aiz(

 The circle, then, may be taken to be the orbit space. The displayed mapping (*)

 can be called a covering mapping and has the property that the pre-image with

 respect to (*) of any point on the circle consists in precisely one orbit with respect

 to A.

 (Real line, viewed

 as a helix)

 Covering

 mapping

 \IV

 (Orbit space, viewed

 as a circle)

 FIG. 3
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 598 B. MAZUR [August-September

 If a function f on Ra is invariant under the translation TA-which means that

 f(TAx) = f(x) for all x, i.e., f(x + A) = f(x)-we say that f is "periodic" with

 period A.

 -A 0 A

 Graph of a periodic function on the line. Now viewed as function on the orbit space.

 FIG. 4

 The circle as orbit space is a proper realm on which to consider periodic

 functions with period A. Any such function f may be viewed in a natural way as

 defined on the orbit space, and conversely any function on the orbit space may be

 viewed as coming from a periodic function on R with period A.

 (II). Double periodicity on the (Euclidean) complex plane-the setting for the

 classical theory of elliptic functions.

 Now let us pass from the real line Rt to the complex plane C. Instead of

 considering only one translation, as we did with R, it is natural in this (two-dimen-

 sional) context to consider as "symmetries" two translations TA1 and TA. acting on

 the complex plane

 TAX :x x>X +AL TA2 x x +A2,

 Complex

 Plane

 0 Al

 FIG. 5
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 1991] NUMBER THEORY AS GADFLY 599

 and the various symmetries obtainable by iterations of them (x -* N1 A1 + N2 A2,

 for integers N1 and N2). Here A1, A2 are two complex numbers such that 0, A1, and

 A2 are not collinear (and therefore "generate" a lattice A as in FIGURE 5).

 An orbit with respect to A (that is, the set of points in the complex plane which

 can be obtained by the iterated application of the translations TA1 TA2 and their

 inverses to a single point in the complex plane) is simply a "displaced lattice" as in

 FIGURE 6 below. Any such orbit has exactly one representative in the (half-closed)

 parallelogram as in the next figure, whose vertices are 0, A1, A2, and A1 + A2.

 FIG. 6. The E's mark an orbit with respect to the lattice.

 As in the example of R given previously, by the orbit space with respect to the

 two symmetries TA. and TA2 (or, we may say, with respect to the lattice A) we mean

 the collection of orbits with respect to A. We may visualize this orbit space as the

 parallelogram with vertices 0, A1, A2, and A1 + A2 "wrapped up" as shown in

 FIGURE 7 below. Topologically it is a "torus," i.e., the surface of a doughnut. Call

 FIG. 7
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 (Euclidean) -

 Complex Plaan

 Euclidean

 Uniformization

 a C .; ~~ylnder

 Elliptic curve

 FIG. 8. The "covering mapping" which brings the complex plane C to the orbit space C/A may also be

 visualized as a two-stage process, where in the first stage the plane is wrapped around a cylinder, and in

 the second stage the cylinder is wrapped around a torus.

 the orbit space C/A. The mapping which sends each point in the complex plane to

 the orbit which contains it is our covering mapping C -> C/A:

 We wish to think of the orbit space C/A as inheriting a "conformal geometry"

 (and an orientation) from the standard Euclidean geometry of the complex plane C

 via this natural mapping. A conformal geometry on a smooth surface is a "geome-

 FIG. 9. In conformal geometry, there is no invariant notion of "length" of an arc, but there is a notion

 of angle.
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 try" where there is no intrinsic notion of "length of arc," but if we are given two,

 real, smooth pieces of arc traced on the surface which intersect at a point (as in

 FIGURE 9) it makes sense to talk about their angle of intersection.

 To endow a smooth surface with an orientation and a (locally Euclidean)

 conformal geometry is the same as to consider it as a Riemann surface.'3 (Here is a

 sketch of the modern formulation of this notion, originating essentially with

 Herman Weyl: to give a smooth surface the structure of Riemann surface has to

 specify at each point of the surface a preferred class of complex-valued functions

 defined locally about the point, called analytic functions, where this specification is

 done in the following manner: Among the analytic functions about each point

 there is at least one, call it z, which identifies some neighborhood of the point with

 an open set U of the complex plane so that the specified class of analytic functions

 on that neighborhood is identified with the class of standard analytic functions on

 U. Moreover, the condition of being an 'analytic function' is a local condition in

 the sense that a function defined on an open subset of the surface is 'analytic' if

 and only if it is 'analytic' on each subset of any open cover of that open subset.

 Given, then, a Riemann surface we may say what it means for a complex-valued

 function on it to be 'analytic,' or 'meromorphic' (a ratio of 'analytic functions').

 A function which plays the role required of the function denoted z above,

 which is defined locally about a point of the surface and, moreover, which vanishes

 at that point is sometimes called a local uniformizer at the point in question. The

 local isomorphism between an open subset of a Riemann surface and U c C given

 by a 'local uniformizer' z identifies the "conformal geometry" on that open subset

 with the Euclidean conformal geometry on U}.

 With Weierstrass let us ask for (doubly) periodic14 functions on the complex

 plane: functions which are periodic with respect to both T and TA2. These doubly

 periodic functions are precisely the meromorphic functions on the quotient space

 C/A, meromorphic in the sense of its Riemann surface structure. As Weierstrass

 showed, the problem of constructing all such periodic functions can be elegantly

 settled by the construction of one special periodic function, the so-called P-func-

 tion attached to A,l P(z) (call it gp for short)'5 which satisfies a nonlinear

 differential equation of the form

 (,,2-=4 3 +A +B,

 where A and B are complex numbers, and <p'(z) = dp(z)/dz. This turns out to be

 quite an adventitious mathematical construction! An unexpected number of prob-

 lems are solved in a single stroke: First, the stated problem finds its solution in this

 construction, for any doubly periodic (with respect to A) meromorphic function can

 be obtained as a rational function in P and g,. But it is also the case that any

 equation

 y2=4 X3+A X+B (A,Be) (*)

 '3See Felix Klein's classic expository account: On Riemann's Theory of Algebraic Functions and

 Their Integrals (A Supplement to the Usual Treatises). Dover.

 14(meromorphic)

 15given by: PA(Z) = 1/z2 plus the infinite sum of the terms {1/(z - A)2 - 1/A2} where A ranges

 through the nonzero elements of the lattice A.
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 [such that the cubic polynomial 4 X3 + A X + B has no multiple roots] arises as

 the polynomial relating PA and gp where A is the Weierstrass gp-function

 attached to some lattice A. The algebraic curve in the (X, Y)-plane defined by

 such an equation (or rather, the completion of this curve in the projective plane) is

 called an elliptic curve. There is a single point at oo on this curve; this point will be

 called the origin of the curve. It is an easy exercise in algebra to see that any

 smooth algebraic curve of degree 3 in the projective plane can be given, after any

 choice of an origin and an appropriate rational change of variables, a defining

 equation of the above form (called a Weierstrass equation). This means that if we

 are interested in the algebraic problem of finding all complex solutions of smooth

 homogeneous forms in three variables of degree 3 (or equivalently, of finding

 solutions of a "Weierstrass equation") we are led to the analytic construction of a

 specific lattice A in C, of its associated gp-function gpA(z), and then the non-origin

 points on E are given by (X, Y) = (gpA(z), gp(z)) where z ranges through the

 points of C which are not in A. Let us call the mapping

 C - A S 2 elliptic curve - origin

 Z (X, Y) = (p ) 1 ( Z))

 a (Euclidean) uniformization of our elliptic curve. One can, if one wishes, complete

 the picture to get a mapping

 C - elliptic curve

 which identifies the complex points of our elliptic curve (including its origin) with

 the orbit space with respect to A, i.e., the Riemann surface'6 C/A, the mapping

 being the covering mapping.

 The word "uniformization" is meant to carry the full load of its nuances here.

 We have uniformly parametrized the complex points of any elliptic curve by the

 points of C (more exactly, if you wish, by the orbits of these points under

 translation via the elements of a lattice A determined by the elliptic curve).

 The uniformization W also uniformizes the conformal geometry of any particu-

 lar elliptic curve, in the sense that 4? identifies the conformal geometry of the

 Riemann surface, locally, with Euclidean conformal geometry (its inverse, locally

 defined, gives local uniformizers in the sense described above)'7.

 So far, our equation (*) has complex coefficients A, B. Number theory will

 properly enter our picture when we consider elliptic curves y2 = 4 X3 +

 A X + B where the coefficients A, B are algebraic numbers, or more specifically,

 rational numbers. To focus on the latter case which will be our eventual particular

 interest, let us refer to an elliptic curve whose coefficients A, B lie in Q as simply

 16It has mystified generations of students that (algebraic) curves can be viewed as (Riemann)

 surfaces. The clash in terminology indicates that, as its name implies, Algebraic Geometry is at the

 meeting-ground between algebra and geometry: one thinks, for example, of C as the affine line (i.e., a

 curve) if one is thinking algebraically and as the complex plane (i.e., a surface) if one is thinking

 geometrically.

 17The uniformization % has the further "uniformity" property, usually incorporated in the technical

 definition of a covering mapping, that any small enough disc on the elliptic curve has the property that

 its pre-image under % consists in a disjoint union of components, each of which maps isomorphically

 onto the given disc.
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 1991] NUMBER THEORY AS GADFLY 603

 an arithmetic elliptic curve. But before we deal with arithmetic elliptic curves we

 have some hyperbolic geometry to do.

 (III). Periodicity on the (non-Euclidean) hyperbolic plane-the setting for the

 classical theory of modular functions.

 Let us turn now to hyperbolic geometry, the (independent) discovery of Bolyai,

 Gauss, and Lobachevsky.

 Hyperbolic geometry is a homogeneous geometry satisfying all the Euclidean

 axioms except for the fifth postulate, and possessing many lines through a given

 point, parallel to a given line; it now has a number of equivalent concretizations.

 The model particularly useful to us is the upper half-plane model.

 Here the points of the geometry are the points z = x + iy in the upper half of

 the complex plane H, i.e., x can be any real number and y any positive real. The

 lines are either vertical straight lines {a + iy} for a fixed real number a and all

 positive reals y, or else they are semi-circles abutting on the real axis. The upper

 half-plane model inherits a Riemann surface structure, and hence also a conformal

 geometry by virtue of its being an open subset in C.

 Upper half-plane

 model of hyperbolic geometry / "li/

 / / / / ~Two "lines" through a point

 X / / / / / P and "parallel" to another

 //,X' ,,/' / ,1 / / ine."

 //''~~~~~ /''' S~Sa

 /~~~~

 FIG. 10

 The translations Tb z z + b for any real number b are symmetries of

 hyperbolic geometry, but there are many more symmetries (in fact two other

 continuous parameters of them'8), perhaps the most important single one being

 inversion with respect to the unit circle, S: z - - 1/z.

 8Consider matrices of real numbers of determinant equal to 1, i.e.,

 a, b

 c, dJ

 with ad - bc = 1. Then z - az + b/cz + d is an orientation-preserving transformation of the upper

 half plane which is a symmetry of its hyperbolic geometry, and any orientation-preserving symmetry is

 given by such a matrix.
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 -1 -2 0 +2 +1

 FIG. 11

 FIGURE 11 is meant to illustrate the tiling of the hyperbolic plane that is gotten

 by systematically applying composites of iterates of the unit translation, T,1: z

 z + 1, and of the inversion S (and of their inverses), to the "basic tile," which is

 the shaded region in the figure. Let F be the group of symmetries of the

 hyperbolic plane gotten from such compositions of T1 and S. It is a fact that F

 consists in all transformations of the form z -> az + b/cz + d where the coeffi-

 cients a, b, c, d are all integers and ad - bc = 1. There are a number of striking

 differences between F acting on the hyperbolic plane and a lattice A, generated by

 translations TA1 and TA2, acting on the complex plane. First, the two translations of

 the complex plane TA1 and TA2 commute with one another, which is not the case

 for translation and inversion of the hyperbolic plane, i.e., F is a more interesting,

 noncommutative, group. And second, there is a natural way of identifying A with

 -1 - 2 0 + ?1

 FIG. 12
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 an orbit in the complex plane (the orbit containing 0). There is no such identifica-

 tion for F'9. In FIGURE 12, the "dots" (one in each tile) mark a single orbit with

 respect to F.

 If E is an elliptic curve given with its conformal geometry, it has, of course, its

 Euclidean uniformization coming from Weierstrass's theory as described in II

 above. By a hyperbolic uniformization of E is meant a mapping

 H - (finite union of F-orbits} E - finite set of points),

 which is a covering mapping of the domain onto the range20, which preserves

 orientation, is a local isomorphism of conformal geometries21, and which is

 periodic with respect to a subgroup of finite index in F. This last condition just

 means that there is a subgroup F' c F of finite index such that if z y-> Y(z) is a

 transformation in F', then

 Y/(Y( Z)) = Y(Z)

 In other terms, % factors through the orbit space of the upper-half plane under

 the action of F'.22

 For any such F', there are only a finite number of distinct elliptic curves

 admitting a hyperbolic uniformization periodic with respect to F'. Moreover, it is a

 consequence of a theorem of Bely that an elliptic curve admits a hyperbolic

 uniformization if and only if it has a Weierstrass equation with coefficients A, B

 which are algebraic numbers, i.e., A, B E Q.

 3. The conjecture of Shimura-Taniyama-Weil. A hyperbolic uniformization of E

 was defined to be a covering mapping periodic with respect to any subgroup of

 finite index in F. There is, however, a specific class of subgroups of finite index in

 F which plays a dominant role in arithmetic. To explain why this class should play

 the role it does (and there are interesting geometric reasons for this) would lead us

 far afield. But the definition of the class is simple enough: For a positive integer N,

 let F(N) denote the group of matrices

 a, db

 where a, b, c, d are integers, ad - bc = 1, and which are congruent to the identity

 matrix ( 1 ? ) modulo N.

 The groups F(N) act as groups of symmetries of the hyperbolic plane (the

 above matrix acting by the rule z -> az + b/cz + d), these groups all being

 subgroups of finite index in F. Any subgroup of F containing one of the F(N)'s is

 called a congruence subgroup. The terminology here is quite straightforward: a

 congruence subgroup of F is simply one that is definable by congruence conditions

 on the coefficients of the matrices representing its elements. Not all subgroups of

 finite index in F are congruence subgroups. (It is even true that, at least according

 19There are two orbits which are slightly more degenerate than the rest.

 2OAs in footnote 17.

 21Equivalently: is an analytic (unramified) covering mapping of Riemann surfaces.

 22The uniformization % extends to an analytic mapping of the upper half-plane onto the comple-

 ment of a finite set of points in E.
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 to one natural way of counting them, relatively few subgroups of finite index are

 congruence subgroups.) But this gives rise to the key.

 DEFINITION. Let E be an elliptic curve. A hyperbolic uniformization (of E) of

 arithmetic type is a hyperbolic uniformization of the elliptic curve E which is periodic

 with respect to a congruence subgroup F' c F.

 Although (by Weierstrass) any elliptic curve admits a Euclidean uniformization

 (and, in fact with respect to a lattice A c C unique up to complex scalar change),

 and (by Bely) an elliptic curve admits a hyperbolic uniformization if and only if it

 can be defined by a Weierstrass equation with coefficients A, B which are algebraic

 numbers, the Shimura-Taniyama-Weil conjecture asserts, further, that

 Any arithmetic elliptic curve (i.e., any elliptic curve whose defining equation can

 be taken with coefficients in Q) admits a hyperbolic uniformization of arithmetic

 type.23'24

 Euclidean

 compex

 plane

 Euclidean\t

 uniformizer

 constructed by Is there also a

 Weierstrass hyperbolic uniformization

 of arithmetic type?

 Arithmetic elliptic curve

 FIG. 13

 23The formulation we have just given of the conjecture would make it seem "unfalsifiable." But in

 fact, there are more precise versions of the conjecture which predict, given an arithmetic elliptic curve

 E, exactly which F(N) would be involved in a hyperbolic uniformization of arithmetic type for

 E-these precise versions are known (by the work of Hecke, Eichler, Shimura, Weil, Deligne, Carayol,

 Faltings, and others) to be equivalent to the one given here. A technical point relevant to this

 equivalence is treated briefly in an appendix to this expository article. There are also stronger

 conjectures by Langlands (concerning automorphic representations of reductive groups) and by Serre

 (concerning 2-dimensional representations of Galois groups over Q) which imply the conjecture of

 Shimura-Taniyama-Weil.

 24As Serre remarked, it might be illuminating to formulate a precise conjectural characterization of

 the class of elliptic curves (necessarily definable over G) which admit hyperbolic uniformizations of

 arithmetic type. The conjecture of Shimura-Taniyama-Weil asserts, of course, that any elliptic curve

 definable over G admits such a uniformization. Among the elliptic curves definable over quadratic

 number fields, for example, a necessary condition for them to have such a uniformization is that they be

 C-isogenous to their conjugate (cf. Goro Shimura, Class fields over real quadratic fields and Hecke

 operators, 95 (1972) 130-190, where the case of real quadratic fields is analyzed and examples are

 given).
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 It is the confluence of two uniformizations, the Euclidean one, and the

 (conjectural) hyperbolic one of arithmetic type, that puts an exceedingly rich

 geometric structure on an arithmetic elliptic curve, and that carries deep implica-

 tions for arithmetic questions.

 4. Why does the Shimura-Taniyama-Weil conjecture imply Fermat's Last Theo-

 rem? This is not the place to go into the reams of evidence in favor of the

 conjecture, or of the overarching Langlands Program of which this conjecture is a

 minute part. But those readers who have borne patiently with me up to this point

 deserve some hints, however brief, of the connection between the conjecture which

 has been the focus of our talk and Fermat's Last Theorem.

 Suppose, then, that we are given a counterexample to Fermat's Last Theorem,

 i.e., we are given a particular solution to a Fermat equation, aP + bP = cP, where

 a, b, c are nonzero integers and the exponent p is an odd prime number. We

 might safely suppose that p > 150,000 since Fermat's last theorem has been

 established for odd exponents smaller than that bound. The subsequent argument,

 however, works for all primes p > 5, which is all that we assume at this point. We

 can always arrange the equation, by permuting (a, b, c) with appropriate changes

 of sign, if necessary, to get b to be even and a to be of the form 4k - 1.

 Hellegouarch [H] and, more recently, Frey [Fr 1, 2] consider the arithmetic elliptic

 curve given by the cubic equation

 y2 = x(x - aP)(x + bP) ( )

 which at first sight may not seem remarkable, but ... (as is suggested in [Fr 2],

 formulated and set up in [S], and concluded in [R])

 THEOREM. The arithmetic elliptic curve ( *) does not admit a hyperbolic uni-

 formization of arithmetic type.

 COROLLARY. The conjecture of Shimura-Taniyama-Weil implies that the arith-

 metic elliptic curve (* *) does not exist, i.e., the conjecture of Shimura-Taniyama-Weil

 implies Fermat's Last Theorem.

 For a sketch of the proof of the above theorem, the reader might consult the

 Bourbaki report of Oesterle [0]. The proof makes essential use of the classical and

 also the more modern arithmetic theory of modular forms. One supposes that

 (* *) does admit a hyperbolic uniformization of arithmetic type. Then, if w is a

 regular differential 1-form on the elliptic curve, pulling w back to the upper

 half-plane via the hyperbolic uniformization one gets a differential 1-form on the

 upper half-plane which after suitable normalization can be written as f(z) dz

 where f(z) is a cuspidal modular form f of weight 2 (the form f is modular for

 one of Hecke's groups and is an eigenform of the Hecke operators) with integral

 Fourier coefficients:

 f(z) =1 e2Trz + a2 2e4liz +a3 3. e6rriz + ( C-

 Using an approach suggested by a conjecture of Serre, and using the specific

 form of the -discriminant and the conductor of (* *)25, Ribet has shown that the

 25The discriminant of the cubic equation (* *) is a perfect pth power times a power of 2 (it is

 precisely (aPbPcP/28)2) and the conductor of (* *) is an even square-free number.
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 Fourier coefficients of f, a, = 1, a2, a3, * * * are congruent modulo p to the

 Fourier coefficients of a modular form SD of weight two on Hecke's group Fo(2).

 Ribet's argument is startling in its originality and makes use, among many other

 things, of the very mysterious "Drinfeld switch" which occurs in the description of

 the "bad fibers" of Shimura curves.

 But by our good fortune there is only one modular form of weight two on Fo(2)

 the Eisenstein series. That is, we know exactly what SD is, and therefore we know

 the Fourier coefficients of f, a1 modulo p.

 Now, the theorem of Eichler-Shimura links the Fourier coefficients aj modulo

 p to questions of Q-rational p-torsion on the arithmetic elliptic curve (* O). From

 our explicit knowledge of aj mod p, we deduce that there exists a rational point of

 order p on (* * )26.

 But any arithmetic elliptic curve, which like ( *) has all four points of order 2

 rational over Q, cannot have any rational p-torsion for p > 5 (see [M]). Contradic-

 tion!

 I hope, in these few minutes to have given some sense of the eclectic spirit of

 this conjecture, of how broadly it reaches out towards realms of mathematics that

 one might, at first, believe to be remote from Arithmetic, and yet how it gets to the

 heart of Arithmetic matters.

 References for ?4.

 [Fr 1]. G. Frey, Rationale Punkte auf Fermatkurven and getwisten Modulkurven, J. Crelle, 331 (1982)

 185-191.

 [Fr 2]. _ _, Links between stable elliptic curves and certain Diophantine equations, Ann. Univ.

 Saraviensis, Ser. Math. 1.

 [H]. Y. Hellegouarch, Courbes elliptiques et equations de Fermat, The'e, Besancon, 1972.

 [M]. B. Mazur, Modular curves and the Eisenstein ideal, Publ. Math. I.H.E.S., 47 (1977) 33-186.

 [0]. J. Oesterle, Nouvelles approaches du "Theoreme" de Fermat, Seminaire Bourbaki 87/88

 n 694, Asterisque, 161-162 (1988) 165-186.

 [R]. K. Ribet, On modular representations of Gal(Q/Q) arising from modular forms, Inv. Math.,

 100 (1990) 431-476.

 [S]. J.-P. Serre, Sur les representations modulaires de degre 2 de Gal(Q/Q), Duke Math J., 54

 (1987) 179-230.

 Technical appendix: questions of fields of definition. These questions have not

 been dwelt upon, in the expository account above, because one of the points of my

 exposition was to emphasize the purely "geometric" nature of the Shimura-

 Taniyama-Weil conjecture. Nevertheless, the more standard expression of this

 conjecture (and, in fact, the form of the conjecture that has direct arithmetic

 consequences) is that given any elliptic curve E over Q, there is a nonconstant

 mapping defined over Q from a modular curve XO(N) onto E. Here XO(N) is

 viewed as an algebraic curve over Q (given its "canonical model" structure over Q,

 as initiated in [Sh 1]).

 The point of this appendix is to make clear that we have not "cheated" in the

 statement we gave in the body of our expository account. That is, we will show that

 the "Shimura-Taniyama-Weil conjecture" as given in our expository text is equiva-

 lent to the statement in the preceding paragraph.

 260r at least on an arithmetic elliptic curve isogenous to (* *) via an isogeny of degree p rational

 over U.
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 Specifically, we shall sketch the proof that if an elliptic curve defined over Q

 admits a nonconstant mapping from X(N) defined over C, for some N, then it

 admits a nonconstant mapping from XO(N) defined over Q as well (but possibly

 for a different value of N). Now this fact is surely a "folk-theorem" either known

 to, or else easily derivable by, any of the experts. We record some brief indications

 of its proof here simply because it doesn't seem to be anywhere in the literature

 (but see [Ri] for very closely allied results).

 Let K be a field (characteristic 0 is all we shall need) and consider the category

 5'K whose objects are abelian varieties over K, and whose morphisms are

 a-vector spaces obtained as follows: If A, B are abelian varieties over K, and

 HomK(A, B) is the abelian group of K-homomorphisms of abelian varieties, then

 the Gl?-vector space of morphisms from A to B in q/K is HomK(A, B) 0 ?X. Thus,

 two abelian varieties are isomorphic in QIK if and only if they are K-isogenous.

 Let A be an abelian variety over K, and let M be a finite-dimensional Gl?-vector

 space with continuous- Gal(K/K)-action (i.e., the action factors through a finite

 quotient), where K is an algebraic closure of K. Then A 0 M is the unique object

 of QIK representing the contravariant functor B p-> {HomK(B, A) X M}Gal(K/K)

 where the superscript Gal(K/K) refers to the elements invariant under the

 (diagonal) action of Gal(K/K) on Homk(B, A) 0 M.

 Let N be a positive integer, and X1(N)/, the canonical model over Q of the

 modular curve attached to the classical group r1(N), as in [Sh 3]. Let JI(N)I, be

 the jacobian of X1(N)/Qu, which we view as object of the category w,K. Let E be

 an elliptic curve over Q, and let L/G be a field extension.

 DEFINITION. The elliptic curve E is called modular over L if there is an integer N

 and a nonconstant mapping X(N)/L -- EIL (rational over L).

 PROPOSITION. The elliptic curve E is modular over L if and only if E is modular

 over Q and more specifically, if and only if there is a nonconstant mapping

 XO( N )I -E/ El. (rational over 0).

 Sketch of proof. We may assume that E does not have complex multiplication

 over C, for if it did, then it would be modular over QI [Sh 4].

 If E is modular over a given field, then it is also modular over any extension

 field, and if E is modular over C then it is modular over U, so we need to prove

 that if E is modular over Q, then it is also modular over (U. Recall that there is a

 nonconstant mapping X1(N2) -> X(N) defined over Q so (after a possible change

 of level N, and reduction from field of definition Q to a suitable finite Galois

 extension L/Q) we may assume that El. is an elliptic curve without complex

 multiplications, admitting an L-rational nontrivial mapping X1(N) -- E. Let G =

 Gal(L/0).

 By consideration of the Weil restriction from L to ( of this homomorphism of

 abelian varieties, and using the fact that J1(N)/, is isogenous (over (I) to a

 product of abelian varieties Af for newforms f (Prop. 2.3 of [Ri]; for more about

 the varieties Af see [Sh 2,3]) we see that there is an irreducible G-module M and

 a newform f with Fourier coefficients in C such that Af is isomorphic in the

 category w/, to E 0 M (i.e., these abelian varieties are isogenous over 0). Let

 F c C be the coefficient field of the newform f (compare [Ri]). Then [F: I] =

 dim Af = dim,(M). We also have that F = End,,,(Af), by (Cor. 4.2 of [Ri]).
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 Using the s4,-isomorphism between Af and E X M and the equality in the

 previous sentence, we get an imbedding of F into End ((E M) = End(M),

 where EndQ,(M) means the ring of endomorphisms of the a-vector space M. This

 makes M an F-vector space of dimension 1. Since the action of F is rational over

 0, it follows that it commutes with the action of G on (E/L) 0 M. It therefore

 follows that the action of G on the F-vector space M is via a character X: G -F

 c C*. Let X: G -? C* denote the conjugate character, and f 0 - the twisted

 modular form. Using the Eichler-Shimura relations one can show that for almost

 all prime numbers p, the p-th Fourier coefficient of f , - is equal to ap =

 1 + p - Np, where Np is the number of rational points of the (good) reduction of

 the elliptic curve E to the prime field of characteristic p. It follows that there is a

 newform so whose field of Fourier coefficients is Gl? and such that for almost all

 prime numbers p, the p-th Fourier coefficient of so is ap. Consequently, the

 abelian variety A,, uniformized by the newform SD is an elliptic curve over Q whose

 associated l-adic Galois representation (for any 1) is isomorphic to that of El.. At

 this point we may deduce (and it suffices, in our situation, to appeal to Theorem

 6.1 of [Ri] rather than to the general Isogeny Theorem proved by Faltings [Fa])

 that El. is isogenous over Q to A,,

 Remark. It is known that if E is modular over G, then there is a surjective

 mapping defined over Q XO(N) -- E, where N is the conductor of E. See [St] for

 a beautiful discussion of refined questions concerning uniformization of elliptic

 curves by modular curves.
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